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J. Phys. A Math. Gen. 25 (1992) 2209-2226. F'rinted in the UK 

Invariant recognition in Potts glass neural networks 

H Vogt and A Zippelius 
lnstitut fur Theoretische Physik, Bunsenstrasse 9, 3400 Gotlingen, Federal Republic of 
Germany 

Received 28 October 1991 

Abstract. We show that a Potts glass neural network can be used for invariant recognition. 
Each neuron is modelled as a q state Potts variable and p Polts configurations are stored 
in the network. The learning rule is a generalized Hebb rule, so that all pq!  permutations 
of the patterns are stabilized simultaneously. We analyse the model far an extensive number 
of patterns and present results of numerical simulations to confirm the analytical results 
and to illustrate the relaxation to equilibrium. The model is applied to the recognition of 
isomorphic graphs. Finally we show how to generalize the model, such that its stable states 
are patterns, where the permutational symmetry is broken in a hierarchical manner. 

1. Introduction 

Invariant pattern recognition has long been recognized as one of the most impressive 
computational abilities of biological neural networks. Various symmetries are important 
in many different contexts: for example, rotational, translational and scaling invariance 
in visual processing, time warping in speech recognition, topological invariance, if 
relations between features or objects are of interest-to quote just a few. 

Two basic approaches have been followed in most attempts to achieve invariant 
recognition in artificial neural networks: 

(i) The object to be recognized is coded in invariant form. For example, translational 
invariance can be achieved by coding Fourier transform magnitudes [l-31. 

ne~woi~-i-- i j  use& io 
transform the input, until the identification with the prototype is achieved [4-61. 

In this paper we shall focus on topological invariance and discuss a neural network 
of type (i), which can store and retrieve relations between objects, for example nodes 
of a graph. The network consists of N neurons si. i = 1,. . . , N, and each neuron is 
modelled by a q state Potts variable, sj E {e,}, I = 1, . . . , q. The vectors e! point to the 
corners of a simplex in q - 1 dimensions. Prescribed configurations {er}, Y = 1,. , . , p, 
of the network are stored in the synaptic matrix according to a generalized Hebb rule 

(ii) A preprocesjiiig unii-in some 

Hence we suggest storing a relation between the state at site i and the state at site j, 
namely the angle between the two vectors ti and 8,. For Potts vectors this angle takes 
only two values, depending on whether = 6 or 6, f 6.  Hence the synaptic matrix 
contains the information, whether or not any two sites are in the same state. 

As shown below, the spin configuration si = 6; is a global minimum of the network, 
as well as all spin configurations which are generated from one of the 6; by a global 
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permutation of the Potts states. This implies that if the network has learnt one pattem 
according to equation (1). it has simultaneously learnt g! patterns, corresponding to 
g! permutations of the Potts states. In general these degenerate minima of the energy 
are separated by barriers. 

It may be possible to use this increase of capacity by a clever coding. Here we 
have in mind recognition processes, which require this invariance. For example: 

(i) Recognition of structures in complicated chemical compounds. We represent 
a linear molecule by a string of letters, which characterize the constituents. If for a 
certain reaction two constituents are equivalent, then the two configurations with 
permuted states should be identified. For example, consider the molecules ATTGCACG 
and TAACGTGC which consist of the four functional groups A, C, G and T. Then, 
in a network that is invariant under the permutation 
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= (3 
the molecules would be identified. 

(ii) Recognition of topological features of graphs. For simplicity we restrict our- 
selves to walks on a lattice with a fixed number of steps. The nodes are numbered 
I = 1, . . . , g and the graph is represented by a string of numbers, indicating the order 
of the nodes visited. A few examples are shown in figures 4-6. 

A related model-a clock model-has been discussed by Cook [7] in the context 
of neural networks. She models a neuron by a discrete set of planar vectors, so that 
the interaction (1) can take on many different values, depending on the number of 
states. Kanter [SI has discussed an ‘anisotropic’ Potts model, where the Hamiltonian 
can be written as 

(2) 

In this case, precisely one Potts state is favoured at each lattice site. Boll6 et al [9,10] 
have discussed the generalization of Kanter’s network to biased patterns. 

Many intermediate variants in between the isotropic (1) and the anisotropic (2) 
model are possible and potentially useful. One can group the states into clusters and 
define coupiings, such that the energy is invariant with respect to permutations of 
states within one cluster but not invariant with respect to permutations of states out 
of different clusters. 

The paper is organized as follows. In section 2 the model is defined and a 
signal-to-noise analysis performed. Subsequently we discuss the stationary states for 
low loading (section 3) and calculate the capacity for a macroscopic number of patterns 
(section 4). In section 5 we present some numerical results to confirm the analytical 
calculations and to illustrate with a few examples the relaxation of an initial state. In 
section 6 we present a general Potts network which is invariant under permutations 
of Potts states within given subsets but not invariant under general permutations of 
states. Finally, in section 7 we discuss and demonstrate by examples how the networks 
can be used to recognize graphs. 

I P N  

N ( + j  

H = -- 1 ( 6 ; .  s { ) ( g .  S j ) .  

2. The model 

We consider a model of N neurons. Each neuron can be in one out of g possible 
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states denoted by ut E (1,. . . , q } ,  i = 1,. . . , N. We define a local 'field' (energy) hi as 

h d v ,  I):= - 1 Jyme,r,<e, (3) 

where ma.8 := q6,.p - 1 = e". 8 is the scalar product between Potts vectors and A, is 
the synaptic matrix, coupling different neurons. (For the calculation it is convenient 
to use U, and m , ,  = s,. e" instead of s, defined in the introduction.) 

The dynamics of the neural network at finite temperature is defined as in [81: the 
probability of neuron i to be in state U E 11, . . . , q }  at time f + 1 is given by 

,(+VI 

In the limit P + 00 the dynamics becomes deterministic: the state of neuron i at time 
I +  1 is determined by the requirement that hg(u, f )  must be minimized by ir,(f+l). 

In the case of symmetric synaptic couplings +Ij = 4, fixed points of the deterministic 
dynamics are local minima of the following Potts Hamiltonian: 

We want to achieve that the fixed points of the dynamics are strongly correlated with 
a given set of p patterns It'} (@ = 1,. . . , p ) .  For simplicity we restrict ourselves to 
random independent variables with a uniform distribution over Potts states 

for k =  1,. . . , q 
1 

4 
P([f = k) =- 

and choose a generalized Hebbian learning rule 

Because ma,B = mn(al ,n(B)  holds for any permutation ?r of {l ,  . . . , q} ,  the Hamiltonian . .  is iiivaiiaiii iiiidei peiiiiiiiaiioiis ~5 of the h i i s  siaies e, E { I , .  . . ,qj .  
In the general form of a Potts Hamiltonian 

our model corresponds to 

whereas Kanter has chosen 

The main difference is that we store the information whether or not two neurons are 
in the same state, whereas in Kanters model information about the specific Potts state 
at each site is stored. 
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In order to check if the network stabilizes a finite number of patterns as well as 
the patterns which are obtained from the stored ones by arbitrary permutations T of 
the Potts states we perform a signal-to-noise analysis. First we consider the case of 
storing only one pattern: 

. N  

The aim is to test local stability, so assume that all neurons except neuron i are in the 
state uj = tj ( j  # i). It has to be shown that h ; ( u )  has a minimum for U = 5,. Now ht (v )  
can be written as t 

h i ( & ) = -  (q-1)2-  1' 1 
fi=f, eu * e, 

6 = c, ti+c,=.. 2, 

h i ( & )  then reads 

h , ( u ) = -  E' - ( q - l ) -  x' - ( q - l ) -  E' 1 for i # j. 

The condition h i ( u )  

0s ( q  - 1 ) #  { j (  # i ) :  tj = &}+ # { j (  f i): tj # 6 = U }  (10) 
which is obviously true. 

For stability to hold one still has to ensure that equality in (10) is impossible. So 
let us assume that (10) holds as an equality, i.e. 6 E (1 , .  . . , q)\{u, tj}. In this case the 
state with ti and U exchanged can be obtained from pattern g by changing the 
corresponding Potts states of tg and U which means performing a special permutation 
under the Potts states. 

So one stored pattern is dynamically stable at T = 0 unless there exists a permutation 
of Potts states which acts on the pattern as a one-spin flip. But this is a rather improbable 
situation for a large network for its probability vanishes for N+W as 

N -2 1 
p@i, k, I :  6 # S 1 V j #  i )  =y Nq2(q - 1 ) N - 2 =  N( 1 -:) 

4 
With the same arguments one can see that all 'Potts-permuted' versions of the patterns 
are stabilized. In this case h reads 

so with the same arguments as above one gets the minimal value of h for T- ' (u)  = tj, 
i.e. U =  r(&). 

For the case of storing a finite number p of patterns one has to separate the local 
field into signal and noise terms. Assuming q = 6; for j # i as before this reads 

= N  

For random unbiased patterns ((X)) = 0 and 

so finitely many patterns will be stabilized in the limit N + 

t%6,=x,<*, l .e , - t ,  etc. 

by the signal term 
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The explicit formula for the N-variance can be used to give an estimate of the 
q-dependence of the critical storage capacity. For a uniform distribution of the Potts 
states,the average value of hi(ti) is ( q  - 1). The critical storage capacity will be reached 
if the noise becomes of the same order as the signal. This gives p J  N = ac = O( 1) which 
will be confirmed in section 4 by a replica calculation. 

3, Menn-fie!d theory fnor !nw !n*n_inp 

Starting from the Hamiltonian ( 5 )  with the learning rule (6) and applying the same 
techniques as in [ll] one gets the following free energy density: 

with the corresponding saddle-point equations 

The physical meaning of the order parameters xrw is given by 

Here ( . )  denotes the thermal average and (.)) an average over patterns. So the xPu 
are generalized overlaps which have the following special values: xGkl = ( l/q)S,,mkl 
for oi = f r ;  x , , ~  = ( l/q)S,,Jnkw(l, for o, = r ( g r )  and xrk, = 0 for completely uncorrelated 
U< and c f .  Moreover the x,,, have the following property: 

Because of the symmetry between different Potts states in our model we make the 
following general ansatz for the x , ~ :  

x,,ki=a,Sr,cr)+b,(l-Sk,o)) (16) 

where r again denotes a permutation of (1,. . . . , q] .  Applying (15) one can see that 
a, and b, are not independent, so the general ansatz reads 

Inserting (17) into the saddle-point equation (13) one finally arrives at the following 
effective fixed-point equations for the c,,: 

Rescaling the inverse temperatures as p + ( q  - l)p gives exactly the same saddle-point 
equations as in Kanter's network model [8]. In what follows we briefly discuss solutions 
of (18) at finite p. In [8] the solutions of the saddle-point equations were only discussed 
for p -00. We furthermore analyse the stability of the fixed points for p + co. This is 
considerably more complicated than in [SI, because we have to check stability with 
respect to nq2 fluctuations 6x,,,. 
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3.1. Muftis states 

First we assume e,. = cS,, , i.e. we look for solutions which correspond to retrieval of 
one pattern or its permutations. It is then possible to perform the average over the 
patterns to get the free energy 

H Vogt and A Zippelius 

The minima off are plotted in figure 1 for the case q = 4. There is a first-order transition 
at a critical value 0, where a positive solution appears. Above p = 1 the solution c = 0 
becomes unstable and a negative solution appears. Special values of p .  are p.= 0.916 
for q = 3, p. = 0.804 for q = 4, p. = 0.712 for q = 5 and p. = 0.490 for q = 9. However, 
a minimum of f ( c )  is not necessarily stable with respect to arbitrary fluctuations in 
xSkr-space. We can merely prove that for p + 00 the positive solution c +  ( q  - 1) is 
&-'.!e. !; =:de: := she:: :his xo:e that :he xit:ix of ;eco::d derivative: i:: c ~ s e  of Mzt::is 
states xrkl = [ c S , , / q ( q -  l ) ]mk, , ( f )  reads 

f i 

-1.0 , , , , , . , , , , I I , . , . . ;T7 
0.0 0.5 1 .o 1.5 2.0 

B 
Figure 1. Extrema of the effective free energy density / (19) as a function of B for q = 4. 
Broken lines denote maxima, full lines denote minima. However, for stability to hold one 
has to investigate the full matrix of second derivatives off: 
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where ak,, bk, do not depend on p. So for p + 00 and positive c, A tends to the unit 
matrix which means that the Mattis states (including permutations) are locally stable 
with respect to deterministic dynamics. Boll6 and Mallezie [9] have investigated 
Kanter's model and its generalization to biased patterns at finite temperature for the 
case of low q and p by studing the dynamics of the overlaps. For Kanter's model they 
find a first-order transition to the Mattis states for q = 3, 4 at T, = 2.185, T4 = 3.728, 
respectively. These values are in accordance with our values for pc if one rescales the 
temperatures as indicated above. However, their results about stability cannot be 
applied to our model. 

3.2. Symmetric sfales 

As a second kind of solutions to the saddle-point equations we consider symmetric 
states, i.e. we assume cF = c, for p = 1, . . . , I and c, = 0 for p > 1. These states are equally 
correlated to the first I patterns. 

We consider two special cases: symmetric states with I = 2 equal overlaps at finite 
temperatures and general symmetric states for p +U?. 

Performing the average in the case I = 2  leads to the following form of the free 
energy density: 

The structure of the minima of f is exactly the same as for Mattis states. The 
corresponding critical values pc for q = 3, 4, 5 and 9 are pc = 0.969, 0.909, 0.852 and 
0.677, respectively. These values are higher and the corresponding temperatures lower 
than for Mattis states with I = 1. This is different from the Ising case where symmetric 
solutions for arbitrary I all appear beyond the critical inverse temperature &= 1 [ I l l .  

In order to perform a stability analysis for p + m and general I one again has to 
consider the matrix A which for general I has the following block structure in the 
pattern indices p and Y: 

0 

with E, D and C, q2 x q2 matrices. In appendix l ' i t  is shown that in the case of p > 12 2 
one of the eigenvalues of C becomes negative for c,>O and p + m  which implies 
instability of the symmetric states in this limit. However, the derivation given in 
appendix 1 does not work for I =  1. This is clear because, as shown above, Mattis 
states are stable for p + m. Moreover, we cannot exclude stability of the symmetric 
states with I = p ,  because in this case, the matrix C does not exist. 
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4. Tbe storage capacity of the network 

In the following we calculate the storage capacity within the replica-symmetric approxi- 
mation. Using standard techniques [8,12, 131 we find the following free energy density 
in the limit N + 00 for finite a = p /  N and one condensed pattern 6'; 

with 
" ' I  " P 

c':= C E +  c 1. (24) 
pokl p e e  k.1 p = m  k h l  

The order parameters m C ,  qr and re; have the following interpretation: 

So the m& are the overlaps with the condensed patterns and the &' are generalized 
Edwards-Anderson parameters. The r& describe the accumulated overlap with the 
non-condensed patterns. We now assume replica symmetry, i.e. 

me, = mkl. (31) 
In order to perform the limit n + 0 in (23) one has to make further assumptions about 
the k-  and [-dependence of the order parameters. Let us assume U, = ~ ( 6 : )  for all i. 
mar A- -.A- ..-.-+--- "__ L.. ... --/,in)- .,..A n = -  h.= id 

us to make the following Potts symmetric ansatz for Mattis states: 
. l lbl l  L1.C V."CI y"a."1cLc'J -1s 81*CL1 " J  r r w  - \', bj,***k.,,(f) 'a..- y*, - ' . . * I .  L...l .*'.I ..,- 
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After equations (29)-(32) have been substituted in (23) and the limit n + 0 has been 
taken, we obtain for the free energy: 

aP 2 a 
2 2 

-- q (q- l ) r (Q- l)+- (9- 1)’ -p(& Q))-- 

In this formula (( ) )c i .x  denotes averaging over the condensed pattern 6‘ and q Gaussian 
random variables rk. We want to calculate the storage capacity in the limit p +m. This 
is done by performing the limit p + m in the saddle-point equations which then are 
given by 

q ( q  - 1)c = Tar’ _m d z r  e-=’[ (t (1 +er(,+ p)))q-’ 2ar‘ 

6=1 (38) 
where m ‘ = m q  and r‘= rq’ have been substituted and e is defined by c = p ( l - Q ) .  
Now the equations for m’, r’ and Q can be transformed into a single equation for 
.I = . . . p . m  . y - ... I .J, *U. . 

4 and ; can be obtained from the other three variables, once a solution has been 
found. The storage capacity a< is given by the value of a above which no solutions 
of (39) exist with y>O.  Inspection of the equation shows that it is identical with the 
corresponding equation of Kanter’s model [8] if we rescale a + a/(q - 1)’. So the 
storage capacity of the isotropic model can be mapped onto that of Kanter’s network 
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by e = aK,,,,r/(q-1)2. This reduction by a factor of O(q2) is plausible, because in our 
model we store the information whether or not the states at two different sites are the 
same. The coupling constant is a scalar quantity, independent of q. In Kanter’s model 
every coupling is a q x q  matrix, so that B ( q 2 N 2 )  couplings can be adapted to p 
patterns. Solving (39) gives the values a,=0.104, 0.092,0.086 and a== 0.076 for q = 3, 
4, 5 and q = 9, respectively. Kanter pointed out that his storage capacity was close to 
the approximate formula a,(¶) = (q (q  - 1)/2)aC(2) ( 4 2 )  =0.138). In our case this 
gives the formula a,(q) = (q/2(q - 1))0.138. So the storage capacity decreases from its 
Hopfield value 0.138 for q = 2  to 0.138/2 for q+m which means it is O(1) for q+m. 
Kanter’s approximate formula contradicts the results of Nadal and Rau [14], who 
calculated the capacity of a Potts network without specifying the couplings. They found 
a = O(q)  and not O(q2) as suggested by Kanter. Note, however, that Nadal and Rau 
require stability at every site, whereas the Hebb rule gives rise to stationary states, 
which are not perfectly correlated with the patterns. 

H Vogt and A Zippelius 

5. Simulations 

In this section we present results of numerical simulations to confirm the analytical 
calculations and to illustrate with a few examples the relaxation to equilibrium. In 
addition to the dynamical updating rule (4) we also consider another process defined 
by the prescription: 

(i) Choose a random direction k E { I , .  . . , q }  with equal probability. 
(ii) Decide if a flip into direction k will be performed according to the probability 

In the limit p + m the updating rule is to choose a random direction U and to flip into 
this direction, if the local field h,(u) is decreased,i.e. if h , (u)< hj(udt)). Otherwise 
the spin at site i will be left unchanged. The dynamics so defined is the application 
of a general process proposed by Binder [ 151. It obeys the principle of detailed balance, 
so for f -f m the possible states will be visited according to the canonical distribution. 
Therefore both (4) and (40) should give the same results concerning stability of the 
equilibrium states. 

We first discuss the question of what is an appropriate choice of the order parameter, 
given the permutational symmetry of our model. One possibility is to take the complete 
order parameter matrices x,,~~. We have simulated the network to get these order 
parameters and a typical result can be seen in table 1 where the xek, have been rescaled 
to xFkl = (l/N(q - l ) )ZE,  m,,kms:,l. The results show that the order parameters xFkl 
behave as was expected, indicating retrieval by the structure xFk, = S,,mk,/(q -1) after 
relaxation. As expected, presenting a permuted version of a stored pattern as initial 
condition leads to the structure xrkl = SGV(l/(q - l))mr-c,,. This also indicates that 
permuted patterns are stabilized by the network. 

However, the xWk, give a redundant description of the network state. So a better 
chdce fer an &er parameter ccc!d be 

6,. := max xpkl (41) 
k 

the maximal element of the first x,-column. These quantities are permutation invariant 
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'Table 1. Temporal development of the full order parameter matrices xrk ,  far a network 
with N =400 neurons, q = 3 Pons states, p = 4  stored patterns and the dynamics (4). Only 
the overlaps with patterns 3 and 4 are shown. It was checked independently that the 
network state at time 3 was identical to pattern 4. 

Pattern 3 Pattern 4 
1 Xlkl x4t1 

0 0.001 -0.033 
0.046 -0.021 

-0.048 0.054 

1 -0.029 -0.006 
-0.003 0.009 

0.032 -0.003 

2 -0.025 -0.003 
-0.006 0.005 

0.031 -0.003 

0.031 
-0.025 
-0.006 

0.035 
-0.006 
-0.029 

0.028 
0.001 

-0.029 

0.193 -0.039 
-0.134 0.200 
-0.059 -0.141 

0.995 -0.539 
-0.543 1.040 
-0.453 -0.501 

0.999 -0.546 
-0.546 1.048 
-0.453 -0.501 

-0.134 
-0.066 

0.200 

-0.456 
-0.498 

0.954 

-0.453 
-0.501 

0.954 

m 

0 5 10 15 20 

t 
Figure 2. Dynamical evolution of the overlaps for N = 400, q = 3, p = 5 and the updating 
rule (4) (full line) and Binder's dynamics (40) (broken curve). 

1 .o 

0.8 

0.6 

m 
0.4 

0.2 

0.0 
0 5 i o  i 5  

t 
Flgum 3. Instability of the symmetric mixture states. Parameters are the same as in figure 
2 but the initial configuration has been chosen as a symmetric mixture of three states. 
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and give th+ = S,, for uj = (r or U; = ?r((r) and th, = 0 for uncorrelated states as N -t m. 
For finite N the x+*, are expected to fluctuate around these values. 

Figures 2 and 3 present the results of some typical network simulations, always 
plotting the th,-overlaps with the different stored patterns as a function of time. In 
figure 2 we show ordinary retrieval at T=O, realizing both different dynamics. One 
can see that retrieval is faithfully performed; presenting a permuted version of one of 
the stored patterns gives the same results. The two dynamical updating rules are 
different with respect to their time-sca!es. For Kmter's dynamics the netwerk :e!sxes 
in two steps, for Binder's dynamics it takes approximately 15 steps. This is due to the 
fact that the Kanter-rule always chooses the flip with maximal decrease of energy, 
whereas the rule (40) possibly chooses Potts directions which only slightly decrease 
the energy. However, one should keep in mind that the single time step in Kanter's 
dynamics takes roughly q times longer than in Binder's dynamics. 

Retrieval dynamics at finite p has also been investigated numerically. The results 
look very similar to those of figure 2 as long as p > 8,. 

The instability of symmetric mixture states for deterministic dynamics is demon- 
strated in figure 3. Starting with three equal overlaps always gives a flow towards a 
single Mattis state. In section 2 we showed that the symmetric mixture states are unstable 
to fluctuations in the space of patterns with initial overlap zero. In the simulations we 
observe that one of the patterns with initial overlap l j l  always wins. Presumably there 
are other unstable modes, which grow faster. 

H Vogt and A Zippelius 

6. Generalized Potts networks 

In this section we shall discuss a network of Potts neurons, which is invariant under 
permutations of Potts states within given subsets, but not invariant under permutations 
of states out of different subsets. Kanter's model and our permutation-invariant model 
are two special cases of this more general Potts network. 

Consider a network of N neurons where each neuron can take on q different states 
as before. The states are grouped into r subsets, each containing m = q j r  states. For 
a given state k define functions g and U such that g ( k )  gives the index of the group 

/ 

....A ..,I-\ .L" :..A..- ... :rl.:- tl.- ---..-. a,'" uta, L11G ,,,urn w1.11111 L l l C  S'YUp. 

g(k) = ( k - 1 )  div m f  1 

u ( k )  = ( k -  1 )  mod m + 1 

where q div p denotes integer division. A simple example are nine states which are 
grouped into three subsets: 

k 1 2  3 4 5  6 7 8 9  

g(k) 1 1 1 2 2  2 3 3 3  
u ( k )  1 2 3 1 2  3 1 2 3  

In our model the local energy is given by  
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with the learning rule 

J:'=y { m ~ ( ~ ~ ~ . ~ ( k ~ m ~ l * ~ l . ~ ( f ) + 8 ~ ( C ~ ) . ~ ( ~ ~ ) ~ g ( k ) , ~ ( f ) m ~ ( * ~ ) . ~ ~ ~ ~ l m ~ ( k ) . " ( l ~ } ~  (42 )  

Here the m,,p-operators are defined with respect to the group index, mg(k) ,g( , )= 
r8g[k ) ,a l l l - l ,  or with respect to the index of the members of a group, m u ( k ) . u ( ~ ) =  

Kanter's model and the isotropic model are reproduced by choosing m = 1 ,  r = q 
(Kanter) and m = q, r = 1 (isotropic), respectively. To obtain new results we always 
assume m, r 2 in what follows. The dynamical updating rule shall be the same as for 
the models considered so far ( ( 4 )  or (40) ) .  

Making use of the fact that Zz=, J Y = Z L ,  /;=O one can calculate the local 
energy 

1 p  

Nq *=I  

m&(k) .u( f ) - l  for k 1 ~ 0 , .  . . , d .  

where c = LkfJy does not depend on the dynamical variables U, U, and hence can be 
neglected in the following. 

We shall now discuss the signal-to-noise analysis of this model and show that it 
stabilizes the patterns as well as their permuted versions. If we consider first, the case 
of one single stored pattern and assume q = 5, for all j (  # i) ( i  fixed) we have to show 
that hj (u ) ,  
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N h M V ) ,  4 f l ) ) = ( N - l ) ( r - l )  for g ( u )  f g ( & )  and u ( u )  f U(&). (47) 

Here B, and B2 are given by 

B, ={A # i): g(5,) = g ( 5 ; )  A u(50# 45;) A u ( u )  = 44)) 
B 2 = { j ( #  i): g(&)=g(C,)A ~ ( ~ ~ ) # u ( ~ ; ) A u ( u ) # u ( ~ ) }  

So the stability condition h i ( & ) <  h i ( u )  V u #  
h i ( g ( ( , ) ,  u ( u ) )  and h , ( . $ ) < h , ( g ( u ) ,  u ( u ) ) .  This can be rewritten as follows: 

reduces to the two inequalities hi(.$,) < 

I A d m  -1)m+lA21+(m - 1 ) ~ B l ~ - ~ B 2 ~  = I A d m  - l)+mlB,l>O (48) 

and 

( N  - 1)( r - l )r+(m - l)iiA,j+ iA2i> 0. (49) 

Now inequality (49) is always true. The left-hand side of equation (48) is positive 
semidefinite. Equation (48) holds as an equality if A ,  = 0 and E, = 0 because B, U B, = 
A,. A ,  = 0 implies that the Potts state at site i does not occur anywhere else in the 
network. B, = 0 implies that u(u) does not occur anywhere among those states, which 
oe1ong LO me same group as 5; \anu Ilt.IICt. Lr,. DOLI1 C"CIIL> a1c "cry uruacry as 1" - Lu, 

as discussed after equation (10). Hence we have shown that ui = ti is a locally stable 
state, except for global permutations which leave the groups unchanged and which 
can be achieved as single spin flips. 

The stability of the permuted pattern a(6) can be easily seen: T will leave the 
groups invariant, i.e. g ( . r r ( k ) ) = g ( k )  and u ( . r r ( k ) ) = a ( u ( k ) ) .  Now assume qj=a(&) 
for such a permutation. Then h j ( u )  reads 

L . ' . ~  .... .L. , ,._A L ._^. -\ ,:,--, x r  .- 

So the stability of the unpermuted pattern means that h , ( u )  becomes minimal for 
. r r - ' (u(u))=u([ , )  and g ( u ) = g ( ( , )  which is equivalent to U=.. (&) .  

An exception is the case of two groups ( r = 2 ) .  Then one has Ising symmetry in 
the couplings among the groups, so that patterns which have undergone an exchange 
of their group indices g ( k )  are also stabilized. 

The case of storing p patterns is now straightforward: a separation of signal- and 
noise-terms gives the results 

((1)) = 0 

So, for finite m and r, and for N + m the signal-term will stabilize the patterns and 
their permuted versions. 

Again, the explicit formula for the variance of K gives a rough estimate for the m- 
and r-dependence of the critical storage capacity ac. If one takes into account that 
the average value for the signal-term (for equally probable Potts states) is of order 
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( r - l )2+(rn- l ) / r  for N - t m  one gets 

as the value of p/ N where signal and noise J((X')) become of the same magnitude. 

7. Application to the recogoition of graphs 

In this section we discuss an application of our multistate network models to the 
recognition of graphs. In the context of graph theory, one can identify a special network 
state (I = (ut , .  . . , uN) with ut E { 1,.  . . . , q }  as a walk on a graph of q vertices, defined 
by the sequence of directed edges (U,, U'), . . . , (u,+~, U"). So, recognition of a certain 
pattern can be interpreted as recognition of the corresponding walk. The main property 

of every stored pattern, can be interpreted in this context as the identification of walks 
which are generated by permutations of the vertices. Note that the underlyisg graphs 
are topologically equivalent (homeomorphic). So, the isotropic network can be used 
to classify classes of topologically equivalent graphs. The application of our model is 
straightfonvard if we restrict ourselves to graphs with a fixed number of vertices ( q )  
and a fixed number of steps ( N ) ,  such that q /  N is small (see stability analysis above). 
In other words, the graphs under consideration have in general repeated edges (graphs 
with this property are called multigraphs 1161). 

An illustration of graph recognition by a Potts network is shown in figures 4-6. In 
the simplest case a network of six neurons with q = 4 states each, is used to store one 
graph with six edges and four vertices. The network can recognize all isomorphisms 
of the stored graph. Successful recognition is achieved in two time steps. In figure 5 
we show results for a network of 10 neurons with two stored graphs. Relaxation of a 
noisy input to the correct isomorphism is seen to take place in a few time steps. 

^C C-^& .̂.I, .....Aa, "".....,.. +L^ -... ....."+:,- .̂"L:,:.."+:̂" ^F ..~.."..tn,4 .,arcinn. 
U. UY, UIJL L,G\WU, h IIIUUS1, ""'L'GLJ L L l G  orY,".II'.,lb D,'L".II~OIIULL U. p . l L . u r r u  I * L I . " . . I  

= (24134) 

4 

- 
Figure 4. Storage of one walk in the isotropic model with 9 = 4 and N = 5 .  Stored pattern 
f (top) and dynamical evolution of a noisy walk into the permutted pattern n ( f )  (bottom). 

The general network of section 6 can also be used in the context of graph recognition. 
The grouping of Potts states corresponds to a grouping of vertices, for example by 
colouring. A simple example is shown in figure 6 for a network of eight neurons with 
six states each. The six states have been divided into three groups (1,2), (3,4),  (5.6). 
We again show the relaxation of a noisy input into a stationary state, which can be 
obtained from the stored pattern by permuting states within a group. 
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E,  = (1224313441) E2 = (3143214124) 

2 

3 
4 

1 1 

4 4 

u(0) = (3324331213) u (2 )  = (3224131213) u (3 )  = (322413144% 
= r(&) with r = e,,,) 

F i p m  5. Storage of two walks in the isotropic model now with q = 4, N = IO. Stored 
patterns 6,. & (top) and dynamical evolution of a noisy walk into the permuted panem 
w ( h )  (bottom). 

1 3 

6 4 

E = (12436353) 

1 1 1 3 

6 6 4 

3 
6 

4 

a(0) = (22365541) u(1) = (21465341) u(2) = (21435363) 

= . ( E )  with ff = (::::E) 
Figure 6. Storage of one single walk in the generalized Potts model with r = 3  groups and 
m = 2 states per group. Stored pattcm 6 (top) and dynamical evolution of an arbitrary 
initial state into a permuted version n( f )  of the pattern (bottom). 

Appendix 1. Instability of symmetric mixtnre states for f l+  00 

As indicated in the main text, we have to show that one of the eigenvalues of C 
becomes negative for p + m. C reads 

E - ( P / q 2 ) ( g - l ) e  ( P / q 2 ) E  

(P/q2)e E- (P /q2 ) (q -1 )E  
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where E denotes the symmetric matrix with elements 
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I;, = mv,",.) - ( m , d  ("A)) 6' ..... 5' (51) 

with E the q x q unity matrix. The eigenvalues of C are thus given by 1 and 1 - (p /  q)cj 
with e, the eigenvalues of 6. Now itself has the form Ck,= S&+(l -S,,)c with 
eigenvalues c * + ( q - l ) c  and 6-c. Moreover one shows that c*+(q-l)c=O and so 
t - c = - q c .  Therefore l + p c  is an eigenvalue of C, so of A. We now show that c 
becomes negative for p + CO. 

c can be shown to give 

where 2, means P > = l . .  . X$=] and m = q / q .  Let &e), . . . , u:(e) be defined by 
: 

max m , 6 - = :  m,L6- k = 1, . . . , s. 
LI * = I  #'=I 

Now c can be written as 

in the limit p -+ m. All summands of this expression are non-positive. Exactly those 
terms yield a negative contribution for p -*OD for which s z 2 and 1,2 E {UT, . . . , U:} 
hold. But such terms can always be given explicitly: 

(i) l c q :  consider t = ( C '  , . . . , C l  ) with components different in pairs and 1 , 2 ~  
{t', . . . , E' } .  In this case s = 1, 1 2 2  and any u * E { ~ ' ,  . . . , e'} maximizes the sum 

(ii) I > q :  now consider 1=2k (or 2k+l ) .  Then take the term t =  
(1,. .. , 1,2, .  .. ,2,(&). This yields a twofold degenerate maximum ( s=2)  with the 
corresponding U: given by UT = 1, U? = 2. 

t 
2*=1 mc.5*. 
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